improved doc import and fixed duplication glitch
This commit is contained in:
parent
8ec5eb69ab
commit
ef61b926a1
4 changed files with 21 additions and 28 deletions
BIN
data/init.sql
(Stored with Git LFS)
Normal file → Executable file
BIN
data/init.sql
(Stored with Git LFS)
Normal file → Executable file
Binary file not shown.
Binary file not shown.
|
@ -1,15 +1,13 @@
|
|||
import json
|
||||
import pathlib
|
||||
import config_backend
|
||||
|
||||
if config_backend.needs_torch:
|
||||
import torch
|
||||
import torch
|
||||
|
||||
from haystack import Document
|
||||
from haystack.utils import ComponentDevice
|
||||
from haystack import Pipeline
|
||||
|
||||
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
||||
from haystack.components.preprocessors.document_splitter import DocumentSplitter
|
||||
from haystack.components.writers import DocumentWriter
|
||||
|
||||
from haystack_integrations.document_stores.pgvector import PgvectorDocumentStore
|
||||
|
@ -29,14 +27,18 @@ class AIBackend:
|
|||
document_store: PgvectorDocumentStore
|
||||
documents: list[Document] = []
|
||||
|
||||
def __init__(self):
|
||||
if config_backend.needs_torch:
|
||||
get_torch_info()
|
||||
def __init__(self, load_dataset = False):
|
||||
get_torch_info()
|
||||
try:
|
||||
self.gpu = ComponentDevice.from_str("cuda:0")
|
||||
except:
|
||||
self.gpu = None
|
||||
print("No CUDA gpu device found")
|
||||
|
||||
dataset = pathlib.Path(__file__).parents[1] / "data" / "dataset.jsonl"
|
||||
if config_backend.load_dataset:
|
||||
if load_dataset:
|
||||
dataset = pathlib.Path(__file__).parents[1] / "data" / "dataset.jsonl"
|
||||
self.documents = [ Document(content=d["text"], meta=d["meta"]) for d in load_data(dataset) ]
|
||||
|
||||
self.document_store = PgvectorDocumentStore(
|
||||
embedding_dimension=768,
|
||||
vector_function="cosine_similarity",
|
||||
|
@ -50,40 +52,32 @@ class AIBackend:
|
|||
def warmup(self):
|
||||
print("Running warmup routine ...")
|
||||
print("Launching indexing pipeline to generate document embeddings")
|
||||
res = self.index_pipeline.run({"document_splitter": {"documents": self.documents}})
|
||||
res = self.index_pipeline.run({"document_embedder": {"documents": self.documents}})
|
||||
print(f"Finished running indexing pipeline\nDocument Store: Wrote {res['document_writer']['documents_written']} documents")
|
||||
self._ready = True
|
||||
print("'.query(\"text\")' is now ready to be used")
|
||||
|
||||
def _create_indexing_pipeline(self):
|
||||
print("Creating indexing pipeline ...")
|
||||
document_splitter = DocumentSplitter(split_by="word", split_length=128, split_overlap=4)
|
||||
if config_backend.needs_torch:
|
||||
document_embedder = SentenceTransformersDocumentEmbedder(model=self.model_embeddings, device=self.gpu)
|
||||
else:
|
||||
document_embedder = SentenceTransformersDocumentEmbedder(model=self.model_embeddings)
|
||||
document_embedder = SentenceTransformersDocumentEmbedder(model=self.model_embeddings, device=self.gpu)
|
||||
document_writer = DocumentWriter(document_store=self.document_store)
|
||||
|
||||
indexing_pipeline = Pipeline()
|
||||
indexing_pipeline.add_component("document_splitter", document_splitter)
|
||||
indexing_pipeline.add_component("document_embedder", document_embedder)
|
||||
indexing_pipeline.add_component("document_writer", document_writer)
|
||||
|
||||
indexing_pipeline.connect("document_splitter", "document_embedder")
|
||||
indexing_pipeline.connect("document_embedder", "document_writer")
|
||||
|
||||
return indexing_pipeline
|
||||
|
||||
def _create_query_pipeline(self):
|
||||
print("Creating hybrid retrival pipeline ...")
|
||||
if config_backend.needs_torch:
|
||||
text_embedder = SentenceTransformersTextEmbedder(model=self.model_embeddings, device=self.gpu)
|
||||
ranker = TransformersSimilarityRanker(model=self.model_ranker, device=self.gpu)
|
||||
else:
|
||||
text_embedder = SentenceTransformersTextEmbedder(model=self.model_embeddings)
|
||||
ranker = TransformersSimilarityRanker(model=self.model_ranker)
|
||||
text_embedder = SentenceTransformersTextEmbedder(model=self.model_embeddings, device=self.gpu)
|
||||
ranker = TransformersSimilarityRanker(model=self.model_ranker, device=self.gpu)
|
||||
|
||||
embedding_retriever = PgvectorEmbeddingRetriever(document_store=self.document_store)
|
||||
keyword_retriever = PgvectorKeywordRetriever(document_store=self.document_store)
|
||||
|
||||
document_joiner = DocumentJoiner()
|
||||
|
||||
hybrid_retrieval = Pipeline()
|
||||
|
@ -132,7 +126,8 @@ class AIBackend:
|
|||
results.append({
|
||||
"id": x.meta["id"],
|
||||
"title": x.meta["title"],
|
||||
"url": x.meta["url"]
|
||||
"url": x.meta["url"],
|
||||
"image_url": x.meta["image_url"]
|
||||
})
|
||||
return results
|
||||
|
||||
|
|
|
@ -1,2 +0,0 @@
|
|||
needs_torch = True
|
||||
load_dataset = True
|
Loading…
Add table
Reference in a new issue