improved doc import and fixed duplication glitch

This commit is contained in:
Firq 2024-12-06 23:40:17 +01:00
parent 8ec5eb69ab
commit ef61b926a1
4 changed files with 21 additions and 28 deletions

BIN
data/init.sql (Stored with Git LFS) Normal file → Executable file

Binary file not shown.

View file

@ -1,15 +1,13 @@
import json
import pathlib
import config_backend
if config_backend.needs_torch:
import torch
import torch
from haystack import Document
from haystack.utils import ComponentDevice
from haystack import Pipeline
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
from haystack.components.preprocessors.document_splitter import DocumentSplitter
from haystack.components.writers import DocumentWriter
from haystack_integrations.document_stores.pgvector import PgvectorDocumentStore
@ -29,14 +27,18 @@ class AIBackend:
document_store: PgvectorDocumentStore
documents: list[Document] = []
def __init__(self):
if config_backend.needs_torch:
get_torch_info()
def __init__(self, load_dataset = False):
get_torch_info()
try:
self.gpu = ComponentDevice.from_str("cuda:0")
except:
self.gpu = None
print("No CUDA gpu device found")
dataset = pathlib.Path(__file__).parents[1] / "data" / "dataset.jsonl"
if config_backend.load_dataset:
if load_dataset:
dataset = pathlib.Path(__file__).parents[1] / "data" / "dataset.jsonl"
self.documents = [ Document(content=d["text"], meta=d["meta"]) for d in load_data(dataset) ]
self.document_store = PgvectorDocumentStore(
embedding_dimension=768,
vector_function="cosine_similarity",
@ -50,40 +52,32 @@ class AIBackend:
def warmup(self):
print("Running warmup routine ...")
print("Launching indexing pipeline to generate document embeddings")
res = self.index_pipeline.run({"document_splitter": {"documents": self.documents}})
res = self.index_pipeline.run({"document_embedder": {"documents": self.documents}})
print(f"Finished running indexing pipeline\nDocument Store: Wrote {res['document_writer']['documents_written']} documents")
self._ready = True
print("'.query(\"text\")' is now ready to be used")
def _create_indexing_pipeline(self):
print("Creating indexing pipeline ...")
document_splitter = DocumentSplitter(split_by="word", split_length=128, split_overlap=4)
if config_backend.needs_torch:
document_embedder = SentenceTransformersDocumentEmbedder(model=self.model_embeddings, device=self.gpu)
else:
document_embedder = SentenceTransformersDocumentEmbedder(model=self.model_embeddings)
document_embedder = SentenceTransformersDocumentEmbedder(model=self.model_embeddings, device=self.gpu)
document_writer = DocumentWriter(document_store=self.document_store)
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("document_splitter", document_splitter)
indexing_pipeline.add_component("document_embedder", document_embedder)
indexing_pipeline.add_component("document_writer", document_writer)
indexing_pipeline.connect("document_splitter", "document_embedder")
indexing_pipeline.connect("document_embedder", "document_writer")
return indexing_pipeline
def _create_query_pipeline(self):
print("Creating hybrid retrival pipeline ...")
if config_backend.needs_torch:
text_embedder = SentenceTransformersTextEmbedder(model=self.model_embeddings, device=self.gpu)
ranker = TransformersSimilarityRanker(model=self.model_ranker, device=self.gpu)
else:
text_embedder = SentenceTransformersTextEmbedder(model=self.model_embeddings)
ranker = TransformersSimilarityRanker(model=self.model_ranker)
text_embedder = SentenceTransformersTextEmbedder(model=self.model_embeddings, device=self.gpu)
ranker = TransformersSimilarityRanker(model=self.model_ranker, device=self.gpu)
embedding_retriever = PgvectorEmbeddingRetriever(document_store=self.document_store)
keyword_retriever = PgvectorKeywordRetriever(document_store=self.document_store)
document_joiner = DocumentJoiner()
hybrid_retrieval = Pipeline()
@ -132,7 +126,8 @@ class AIBackend:
results.append({
"id": x.meta["id"],
"title": x.meta["title"],
"url": x.meta["url"]
"url": x.meta["url"],
"image_url": x.meta["image_url"]
})
return results

View file

@ -1,2 +0,0 @@
needs_torch = True
load_dataset = True